
Module system

Managing code structure in a growing project.
Testing and sharing code conveniently.

Module system consists of:

Packages: A Cargo feature that lets you build, test, and share
crates

Crates: A tree of modules that produces a library or executable

Modules and use : Let you control the organization, scope, and
privacy of paths

Paths: A way of naming an item, such as a struct, function, or
module

Package structure

my-project
├── Cargo.lock <-- actual dependencies' versions
├── Cargo.toml <-- package configuration, dependency version requirements
└── src
 ├── configuration
 │ ├── run.rs
 │ └── mod.rs
 ├── lib.rs <-- root of the lib crate
 ├── bin1
 │ ├── distribution.rs
 │ └── main.rs <-- root of bin crate `bin1`
 └── bin2.rs <-- root of bin crate `bin2`

Lib crates can be shared

crates.io is the main crate repository.

If you specify a dependency in Cargo.toml , it's fetched from
crates.io automatically by Cargo.

lib.rs is the root of a lib crate.

Binary crates can be executed

cargo run executes the bin crate in your package.

If you have multiple bin crates, you have to specify which to run:
cargo run --bin <bin_name>

Each bin crate in a package can import code from the lib crate
there.

Modules: grouping related code (&
encapsulation)

mod front_of_house {
 mod hosting {
 fn add_to_waitlist() {}
 fn seat_at_table() {}
 }

 // Alternatively, this could be located in `serving.rs` file and imported.
 mod serving {
 fn take_order() {}
 fn serve_order() {}
 fn take_payment() {}
 }
}

Modules: grouping related code (&
encapsulation)

crate
 └── front_of_house
 ├── hosting
 │ ├── add_to_waitlist
 │ └── seat_at_table
 └── serving
 ├── take_order
 ├── serve_order
 └── take_payment

Exports & imports

exports: using privacy modifier (pub , pub(crate) , [no modifier])

mod some_mod {
 struct ModulePublic;
 pub(super) struct ParentModulePublic;
 pub(crate) struct CratePublic;
 pub struct WorldPublic;
}

imports: using use statement

use some_mod::CratePublic;
pub use some_mod::WorldPublic; // <-- re-export

