Module system

Managing code structure in a growing project.
Testing and sharing code conveniently.

Module system consists of:

e Packages: A Cargo feature that lets you build, test, and share
crates

e Crates: A tree of modules that produces a library or executable

e Modules and use : Let you control the organization, scope, and
privacy of paths

e Paths: A way of naming an item, such as a struct, function, or
module

Package structure

my-project
— Cargo.lock <-- actual dependencies' versions
— Cargo.toml <-- package configuration, dependency version requirements
L— src
— configuration
run.rs
L— mod.rs
— lib.rs <-- root of the lib crate
— bin1
— distribution.rs
L— main.rs <-- root of bin crate “bin1"

L— bin2.rs <-- root of bin crate "bin2°

Lib crates can be shared

e crates.iois the main crate repository.

e |f you specify adependencyin Cargo.toml, it's fetched from
crates.io automatically by Cargo.

e lib.rs istheroot of a/ib crate.

Binary crates can be executed

e cargo run executes the bin crate in your package.

e |f you have multiple bin crates, you have to specify which to run:

cargo run --bin <bin_name>

e Each bin crate in a package can import code from the lib crate
there.

Modules: grouping related code (&
encapsulation)

mod front_of_house {
mod hosting {
fn add_to_waitlist() {}
fn seat_at_table() {}

}

// Alternatively, this could be located in ‘serving.rs’ file and imported.
mod serving A

fn take_order() {}

fn serve_order() {}

fn take_payment() {}

Modules: grouping related code (&
encapsulation)

crate
L front_of_house

— hosting
— add_to_waitlist
L seat_at_table

L— serving

— take_order

— serve_order

L— take_payment

Exports & imports

o exports: using privacy modifier (pub, pub(crate) ,[no modifier])

mod some_mod {
struct ModulePublic;
pub(super) struct ParentModulePublic;
pub(crate) struct CratePublic;
pub struct WorldPublic;

e imports: using use statement

use some_mod: :CratePublic;
pub use some_mod: :WorldPublic; // <-- re-export

