String formatting

...printf(), sprintf() equivalents & related topics.

Simplest possible output from Rust program

fn main() A
println!("Hello stdout!");
eprintln!("Hello stderr!");

}

Formatted output (using Display trait)

fn agriculture() {

let num_animals = 42_usize;
let animal_name = "ducks";
println! ("We have {} {} in our farm.", num_animals, animal_name);

let s: String = format!(
"Nothing is better than {0} {2}, except for {1} {2},",
num_animals, num_animals + 1, animal_name

),

// Minimal assert.
assert! (num_animals >= 42);
// assert with a custom panic message.
assert!(
num_animals >= 42,
"Too few animals in our farm :(- only {} {}", num_animals, animal_name

),

Formatted output (using Debug trait)

fn agriculture() {
let animals: &[&str] = &["Azor", "Mucka"];

// Does not compile: &[&str] does not implement Display.
// println!("We have the following animals in our farm: {}", animals);

// Concise printing for debug purposes:

println! ("We have the following animals in our farm: {:?}", animals);
// Outputs:

// We have the following animals in our farm: ["Azor"”, "Mucka"]

// Pretty-printing for debug purposes:

println!("We have the following animals in our farm: {:#?}", animals);
// Outputs:

// We have the following animals in our farm: [

// "Azor",

// "Mucka"

/71

Memory backing considerations

fn agriculture() {
let animals: &[&str] = &["Azor", "Mucka"];

let animals: [&str: 2] = ["Azor", "Mucka"]:
let animals: &[&str] = &animals;

let animals: Vec<&str> = vec!["Azor", "Mucka"];

static ANIMALS: [&str:; 2] = ["Azor", "Mucka"]:
static ANIMALS_SLICE: &[&str] = &ANIMALS;

let animals: Vec<&str> = vec!["Azor", "Mucka"];
let animals_slice: &[&str] = &animals:

let animals: Vec<String> = vec!["Azor".into(), "Mucka".into()];

Memory backing considerations - with hints

fn agriculture() {
let animals: &[&str] = &["Azor", "Mucka"]; // stack-allocated stack-backed slice.

// stack-allocated array (of statically-allocated strings).
let animals: [&str; 2] = ["Azor", "Mucka"];
let animals: &[&str] = &animals; // stack-allocated stack-backed slice.

let animals: Vec<&str> = vec!["Azor", "Mucka"]; // stack-allocated heap-backed slice.

static ANIMALS: [&str; 2] = ["Azor", "Muc¢ka"]; // statically-allocated array.
static ANIMALS_SLICE: &[&str] = &ANIMALS; // statically-allocated statically-backed slice.

let animals: Vec<&str> = vec!["Azor", "Mucka"]l; // stack-allocated heap-backed Vec.
let animals_slice: &[&str] = &animals; // stack-allocated heap-backed slice.

// stack-allocated heap-backed Vec of heap-allocated strings.
let animals: Vec<String> = vec!["Azor".into(), "Mucka".into()];

