Don't panic

...or how should your Rust program behave when faced a critical
error.

A situation which unfortunately happens too
often...

// This function returns Order, so we are forced to return
// an Order even for incorrect inputs.
fn create_order(num_dishes: usize) -> Order {
if num_dishes < Order: :MAXIMUM_NUM_DISHES {
Ok (Order: :new(num_dishes))
} else {
// ??? Order::INVALID ?2?7?
}

LET'S PANIC!

// This function returns Order, so we are forced to return
// an Order even for incorrect inputs.
fn create_order(num_dishes: usize) -> Order {
if num_dishes < Order::MAXIMUM_NUM_DISHES {
Ok (Order: :new(num_dishes))
} else {
panic!("Too many dishes for a single Order")
// This either unwinds the stack or aborts the program immediately.
// (configurable in Cargo.toml of your project)

Hmm, maybe let's reconsider this...

/// Error signifying that there are too many dishes to fit in an Order.
struct TooManyDishes;

// This function returns Result, so that we are not forced to return
// an Order for incorrect inputs - we just return Err.
fn create_order(num_dishes: usize) -> Result<Order, TooManyDishes> {
if num_dishes < Order::MAXIMUM_NUM_DISHES {
Ok (Order: :new(num_dishes))
} else {
Err(TooManyDishes)

}

Another common case - Option / Result

struct DivisionByZero;

fn div(dividend: i32, divisor: i32) -> Result<i32, DivisionByZero> {
if divisor == 0 {

// It is idiomatic to return errors after failed checks early in an imperative way, using explicit ‘return’.

return Err(DivisionByZero)

}

// It is idiomatic to have the "happy path" (the no-errors scenario) linear and using functional syntax.
Ok(dividend / divisor)

}

fn main() {
let res: Result<i32, DivisionByZero> = div(2137, 42);

// We are 100% sure division by 42 can't fail, so let's use this shorthand.
let quotient = res.unwrap();

// This is equivalent to:
let quotient = match res {
Ok(x) => x,
Err(err) => panic!("called "Result::unwrap() on an "Err’ value: {:?}", err),

Let's encode more guarantees in the type system!

use std::num::NonZeroI32;

fn div(dividend: i32, divisor: NonZerolI32) -> i32 {
dividend / divisor // Nothing can get broken here!
}
fn main() {
// let quotient = div (2137, 42),; // This would not type check, because 42 is not NonZeroI32.

// We have to create a NonZeroI32 instance:
let non_zero_divisor_opt: Option<NonZeroI32> = NonZeroI32::new(42);

// We are 100% sure 42 is not 8, so let's use this shorthand.
let non_zero_divisor = non_zero_divisor_opt.unwrap();

// This is equivalent to:
let non_zero_divisor = match non_zero_divisor_opt {
Some(x) => X,
None => panic!("called "Option::unwrap() on a "None value'),

}

let quotient = div(2137, non_zero_divisor);

But wait, we ended up with an unwrap() anyway. Did

we then improve at all?

Actually, yes. Now, the function

(here: div()) with some (possibly

complex) logic only accepts (so that the compiler verifies that in

compile-time) valid arguments.]

nis way, the function's code can be

simpler (no invalid-input-related error handling). Also, it's easier to

convince yourself that your num

ner is nonzero than to make sure that

it upholds all guarantees required in the docs of the function

containing logic.

To panic or not to panic

Don't panic:

o if the failureis caused by bad user input - you don't want to open
up a highway for DoS attackers, do you?

o if the failure only affects some task and not the program in general,
e.g. when the server returned bad data for a request of one of the

users; others are unaffected;

e if the failure is recoverable (there is a reasonable action to be done
In such situation, e.g. give user the default value when the server
can't be queried for the actual value);

To panic or not to panic
Do panic:

o if the failureis for sure caused by a bug in your code. It makes
sense to inform the whole world that you wrote deficient software,
by yelling at them. More seriously, this shortens the feedback loop
and bugs are fixed earlier, instead of silently damaging production;

e if the failure is not recoverable (there is no hope, the program is
broken, R.I.P, only the famous restart could help here);

